高边坡稳定性分析及防治措施研究

马俊尧

(中铁十四局集团第五工程有限公司,山东 济宁 272100)

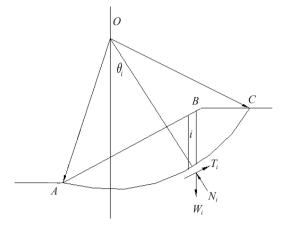
摘要:高填方边坡和挖方边坡的稳定性较差,在实际工程中存在较大安全隐患。针对此类边坡开展防治措施研究,具有重要意义。本文以银昆高速公路LJ10标段某高边坡为依托,对其开展稳定性分析,并据此提出防治加固措施。通过植草防护等具体工程实践,确保边坡稳定性满足要求,从而对高速公路的成功修建和长期运营安全提供保障,为今后同类工程提供参考。

关键词:高速公路;高边坡;稳定性;防治措施;植草防护

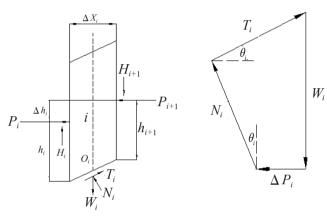
中图分类号: TU43 文献标识码: A

随着西部大开发战略和城镇化建设的逐渐 深入, 西北地区的城市建设已进入高速扩张时 期, 地形多以高山盆地为主, 建设工程不得不面 临挖山填沟造地的高填方边坡工程。代雪等[1]以 某场地高填方边坡和直立边坡为研究对象,基于 Geostudio、理正软件以及ANSYS软件,采用M-P 法、Bishop法和强度折减法进行边坡稳定分析。 赵建祥等[2]为研究降雨作用下高填方边坡失稳机 制,以仁遵高速填方边坡为例,基于Bishop方法和 有限元模型,分析其稳定性变化和滑动机制。叶帅 华等[3]根据西北某路段黄土高填方边坡工程项目, 运用PLAXIS 3D软件建立多级高填方边坡3D有限 元模型,研究了填料、填土边界、坡度以及卸载平 台的改变对边坡稳定性的影响。尽管目前针对高边 坡工程已有相关研究,但针对目前西北地区工程项 目案例研究仍待补充,且不同工程由于所处地质条 件的不同导致不同工程措施适用性减弱, 因此需要 针对相关工程开展具体研究。本文以银昆高速公 路LJ10标段高边坡项目为依托,对其稳定性进行分 析,并开展防治措施建议和效果评价,以期为今后 同类工程提供参考和借鉴。

1 工程概况


银昆高速公路LJ10标段,起讫桩号为K171+500—K189+100,全长为17.6km,其中里程K173+859—K174+110长度为251m,本段挖方主要为马兰黄土和粉质黏土,属于土质挖方,总挖方量9.2×10 m³最大挖方高度为97.46m。拟建银昆高速公路项目所在区域位于宁夏南部,六盘山东侧,地处黄土高原,路线走向近南北。区内地势总体特征西高东低,北高南低,地形起伏较大,最高海拔为1874m,最低海拔为1389m,相对高差约为485m。工作区内地形切割强烈,山峦起伏,沟壑纵横。区内地貌单元主要为剥蚀黄土丘陵地貌、侵蚀堆积河谷地貌以及剥蚀黄土残塬地貌等三个地貌单元。

该路线主要以路基的形式在黄土斜坡上布设,以桥梁的形式跨越贺家台处的水库以及洪积平台内冲沟。黄土梁走向近北西,梁顶较缓,布设路线的黄土斜坡受古地形影响,呈上陡下缓的形态,整体坡度不大于30°。沟谷内发育有洪积平台,宽为200~300m不等,平台内局部发育深20~30m冲沟,沟壁较陡立。水库所在冲沟走向近东西,水面宽约为60m,两岸为高20m洪积平台,底部出露新近系泥岩。


黄土梁上部覆盖马兰黄土,土质疏松,直立性较好,具湿陷性;中部地层为离石黄土,较密实,含黑色铁锰质斑点,夹多层暗红色古土壤层;底部为新近系泥岩、砂质泥岩和白垩系砂岩、砾岩。新近系泥岩胶结较差,遇水易软化,具弱膨胀性。洪积平台堆积20~30m不等的粉土,土质疏松多孔,可见水平层理,顶部土体垂直节理发育,具湿陷性,底部出露新近系泥岩,表面风化破碎呈碎块状。路线跨越洪织平台内冲沟以及水库区域,需注意斜坡稳定问题^[4]。

2 边坡稳定性分析

为分析开挖后的高速公路边坡稳定性,根据《建筑边坡工程技术规范》(GB 50330—2013),采用行业规范规定的极限平衡法进行稳定性分析。基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主要有摩根斯坦-普瑞斯(Morgenstern-Price)法、毕肖普(Bishop)法、简布(Janbu)法、推力法、萨尔玛(Sarma)法等。目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到十分广泛的应用。简化毕肖普法计算简图如图1所示,其中:

(a) 边坡条分图示

(b) 条块受力示意图

(c) 受力多边形图示

冬1 极限平衡法计算简图

$$T_i = \frac{1}{F_s} (c_i l_i + N_i \tan \varphi_i)$$
 (1)

$$\Delta P_i = P_{i+1} - P_i \tag{2}$$

$$\Delta H = H_{i+1} - H_i \tag{3}$$

根据第i条块力平衡条件: $\Sigma F_z=0$, 得到:

$$W_i + \Delta H = N_i \cos \theta_i + T_i \sin \theta_i \tag{4}$$

根据得 $\Sigma F_{x}=0$:

$$\Delta P_i = T_i \cos \theta_i - N_i \sin \theta_i \qquad (5)$$

将式(1)、式(2)、式(3)和式(5)代 入到式(4)中,得:

$$\Delta P_{i} = \frac{1}{F_{s}} \frac{\sec^{2}\theta_{i}}{1 + \frac{\tan\theta_{i} \cdot \tan\phi_{i}}{F}} [c_{i}l_{i}\cos\theta_{i} + (W_{i} + \Delta H_{i}) \tan\theta_{i}] - (W_{i} + \Delta H_{ii}) \tan\theta_{i} = 0 \quad (6)$$

条块侧面的法向力P, 显然有 $P_1 = \Delta P_1$, P_2 = P_1 + ΔP_2 = ΔP_1 + ΔP_2 ,依次类推,有 P_i = $\sum_i \Delta P_i$ 。 若全部条块的总数为n,则有

$$P_{n} = \sum_{i=1}^{n} \Box P_{i} = 0$$
 将式 (6) 代人式 (7) ,得

$$F_{\rm s} = \frac{\sum \left[c_i l_i + (W_i + \Delta H_i) \tan \theta_i\right] \frac{\sec^2 \theta_i}{1 + \tan \theta_i \cdot \tan \varphi_i / F_{\rm s}}}{\sum (W_i + \Delta H_i) \tan \theta_i} \quad (8)$$

式中, T为条块所受推力, W为条块重力, N为条 块接触面压力,P为条块侧面的法向力,H为条块 在滑体内的垂直高度, θ 为条块与竖直平面的夹 角, F_s 为安全系数,c为条块间粘聚力,l为条块 间长度。

由以上公式,利用迭代法可以求得普遍 条分法的边坡稳定性安全系数,得到典型剖面 边坡稳定性系数。在未开挖前,山体的开挖 稳定性较好,稳定性系数为1.13,根据规范规 定,山体处于欠稳定状态。开挖后由于边坡开 挖的卸载作用,边坡稳定性提高,但在靠近边 坡表面,由于降雨,雨水入渗等地质作用下边 坡稳定性随时受到较大影响, 因此有必要对临 空面进行加固措施,确保高速公路项目的稳定 安全。

边坡加固及效果评价 3

3.1 防治措施研究

经实际边坡防治措施比选,边坡均为6m分 级,第三级平台宽度为12m,第6、9、12、15级 平台宽度为14m, 其余各级平台宽度均为3m, 碎 落台宽度为2m, 边坡坡率为1:1.0, 1级平台采用 拱形骨架植草+路堑墙防护,最上一级采用植草 防护, 其余各级采用拱形骨架植草防护, 各级平 台处设U形平台排水沟^[5]。

3.2 植草防护技术

3.2.1 坡面施工

首先进行挂基层网,镀铝锌铁丝网在边坡 悬挂中, 规格为5cm×5cm, 直径为3mm; 其次 进行角铁锚固;最后铺土工布,高强度耐用营 养土工布可对植物根系穿越进行阻止, 在坡面 深扎,根系茂密,保护生态。无营养土工布情 况下,可随意进行格宾网的穿越,无法在坡面 扎根[6]。

3.2.2 覆土栽植

首先进行土层喷射,喷基层植被混凝土,花 生壳及水泥按一定比例、厚度需要覆盖山体,以 形成一个整体。进行种植土喷洒,其中含有的营 养物质包括长效复合肥和喷种植土。其次进行嵌 入栽植,种植穴必须垂直,上下口径相等,尺寸 由土壤及根系情况决定。

3.2.3 养护管理

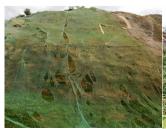
由专业人员负责制备养护, 若为乔木(落 叶),生长快,需要修剪,以保障常绿乔木的正 常生长,实现美化景观目的。冬季要保暖,并在 永久冻土之前用至少10cm厚的软垫覆盖根部。

3.3 加固措施效果评价

植草护坡工作结束后,将对生态系统恢复的

效果进行3次评估,分别是施工结束后1个月、施 工完成3个月后及施工结束6个月后。

3.3.1 施工完成1个月后生态修复效果评价


在恢复之前,斜坡已经裸露,没有植物覆 盖。恢复后的一个月,测试场地的坡度明显被土 壤覆盖,土壤厚度比较均衡。经过一段时间的维 护后,喷撒在山坡上的草种子萌发了。植被生长 良好, 原始裸露的斜坡在斜坡的顶部, 中心和脚 部清晰可见。特别是在山脚下, 施工期间土壤层 的堆积加快了植被的生长。 植被生长比较快, 覆盖率达到80%。但是,总体覆盖率不高,不到 30%。原始的裸露坡度与周围的裸露坡度逐渐形 成比较明显的对照。图2(a)显示了恢复后田间 植被的生长。土壤层不落在斜坡上,几乎没有冲 刷痕迹,只能看到草本植物,并且在斜坡上的覆 盖率很高。这可能是由于重力对植被混凝土的影 响, 整体生态恢复效果不好。

3.3.2 施工完成3个月后生态修复效果评价

生态系统恢复工作完成3个月后,对生态系 统恢复效果进行第二次评估。经过3个月的维护, 植被生长状况良好。如图2(b)所示,稀疏的植 被覆盖着茂密的绿草。根据现场调查,小灌木从 也正在萌芽和生长, 斜坡上的植被覆盖率大概为 70%。整个植物的平均高度为15~30cm,并且根 系茂盛。最初,这些山坡形成了一层草丛和灌木 从,并逐渐绽放出景观物种和野花。该物种的整 体性能相对丰富,可以在斜坡的早期阶段起到保 护土壤侵蚀的作用。斜坡上的植被混凝土基础材 料不会掉落,冲刷痕迹比较小。基于生态恢复效 果的评价标准, 生态恢复效果等级为良好。

3.3.3 施工完成6个月后生态修复效果评价

在结束生态系统恢复工作6个月之后,将 对生态系统恢复效果进行第三次评估。在半年 的维护之后,斜坡生长了很多小灌木,植株高 25~50cm, 基本上形成了一个由草和灌木结合 而成的植物群落。如图2(c)所示,植被土层比 较完整,无脱落现象,也没有被冲刷。根据生 态恢复效果的评价标准,生态恢复效果等级是 良好。

(a) 1个月后

(b) 3个月后

(c) 6个月后 图2 不同时期植草防护效果评价

4 结束语

本文以银昆高速公路LJ10标段高边坡项目为 依托, 开展了稳定性分析及防治措施研究, 并据 此开展植草护坡的效果评价。研究发现, 在未开 挖前,山体的开挖稳定性较好,开挖后在靠近边 坡表面稳定性随时受到较大影响, 有必要对临空 面采取加固措施。经实际边坡防治措施比选,边 坡第一级采用拱形骨架植草+路堑墙防护,最上 一级采用植草防护。经过3次评估植草护坡效果评 估,发现护坡效果良好,能够确保边坡安全。

参考文献

- [1] 代雪,张家明.某场地边坡稳定分析方法的比 较研究[]].中国安全生产科学技术, 2021, 17 $(11) \cdot 119 - 124.$
- [2] 赵建祥,毕鹏飞,惠亚强.降雨作用下 高填方边坡失稳机制研究[1].水利水电 技术(中英文), 2021, 52(S2): 421-429.
- [3] 叶帅华、张玉巧、房光文.黄土高填方 边坡的稳定性影响因素及其变形规律 []]. 兰州理工大学学报, 2021, 47(3): 120-126.
- [4] 李婷, 苏谦, 崔雅莉, 等. 椅式桩板墙 加固土质高边坡地段高填方路基模型试 验研究[]].铁道学报,2021,43(5): 153-159.
- [5] 别江波,宋龙龙,李志勇,等.西南某高填方 边坡的变形及稳定性数值模拟[[].河南科技, 2021, 40 (16): 77-79.
- [6] 李麒麟, 丁保艳, 王鹏.兰州地区某黄土 高填方边坡的稳定性分析与联合支护设计 [J].水利与建筑工程学报,2020,18(6): 165-171.