建筑工程建设智慧化管理案例分析

许多烈

(菏泽市规划管理服务中心,山东 菏泽 274500)

摘要:随着信息化技术、智能化技术和计算机网络的不断发展和推广应用,各行业和领域都在积极推进信息化、数字化、智能化建设,以支撑业务实施,实现高效化管理,持续提高竞争力。新时期,建筑行业的发展也面临着复杂的市场环境和激烈的竞争,建筑工程实施智慧化管理,基于自身施工建设和管理工作的现实需要,构建智慧工地系统和智能化管控平台,加强智慧建造标准化体系建设,能有效提高工程建设管理的水平和质量效果,确保项目顺利进行[1]。本文主要分析了建筑工程建设智慧化管理的意义、现状和问题,探讨智慧化管理的路径和策略,提出一些合理化建议,希望对推进建筑工程行业持续健康发展有所启示。

关键词:建筑工程;智慧化管理;数字化;智能化中图分类号:TU71-39 文献标识码:A

随着建筑工程行业的不断发展,企业间的竞争也更激烈,推进建筑工程行业高质量发展,不仅强调推进施工技术和工艺等的创新,还需要重视采用更先进的管理手段和方法,提高工程建设管理的水平。建筑工程行业发展也越来越重视加强建筑工程行业融合新技术,积极向智慧化管理方向升级,以推进建筑行业持续健康发展^[2]。

1 建筑工程建设智慧化管理的意义

建筑工程建设智慧化管理强调科学应用信 息化技术手段,不断加强建筑工程数字化、信息 化、智能化建设,以实现工程建设全过程、动态 化、全生命周期的管理,能有效提高工程建设管 理的水平和效率,确保工程建设顺利进行[3]。构建 智慧工地系统,能够对信息进行采集,并实现各 相关主体之间的信息交换和各层级的信息传递, 大数据等技术的应用, 能实现数据信息的智能化 处理和深入挖掘利用,进而为工程建设和项目管 理提供科学支撑,极大地提高信息共享、传递效 率,也方便各环节的沟通和协调[4]。加强智慧建造 标准化体系建设,有助于推进建筑工程的转型升 级,引导建筑工程行业融合新技术,促使建筑工 程建设向智慧化管理方向升级[5]。实现全面、全 过程的监督控制,有助于减少工程建设的质量隐 患和安全隐患,及时发现和排查施工安全隐患, 纠正施工偏差问题,提高工程建设的整体质量和 安全性。借助虚拟化技术、BIM技术等,能对建 筑工程建设进行模型化分析,确保对整个项目有 更深入的了解,明确工程环境和条件、潜在因素 和潜在威胁等, 进而为工程建设和设计方案优化 等提供支撑。还可提高工程建设管理的水平和效 率,实现工程建设综合效益最大化[6]。

2 建筑工程建设智慧化管理的现状

BIM技术在工程建设中的科学应用为数字化建设提供了工具和载体;通过加强智能化建设,实现建筑工程管理流程的优化和升级。未来,需要将重点放在智慧化管理方面,以积极推进建筑工程技术工具、建造方法、管理体制、内部治理和管理等的变革和创新^[7]。但从建筑工程建设与管理的现状来看,智慧化管理还处于初步发展阶段,仍存在一些不足和缺陷,需要持续改进和优化。

3 建筑工程建设智慧化管理存在的问题

3.1 系统构建不完善

当前,很多工程企业内部缺乏两级数字化体系和完善的智能建造体系,在内部仍存各个系统和功能模块孤立的现象,缺乏一个实时、动态、开放的数字化、信息化管理系统,无法实现各项数据信息一体化,无法为业务开展、生产经营和内部管理等提供有效支撑和服务。此外,对智慧化管理的重点和要点把握不准确,缺乏统筹考虑和顶层设计,不重视数据信息的深入挖掘、分析和持续运营。在数据信息采集、清洗、集成、分析、挖掘和应用等方面存在不同程度的问题,无法为企业生产经营、内部管理和科学决策提供数据依据和参考,影响其作用的发挥^[8]。

3.2 智慧化管理和应用水平不高

部分建筑工程企业智慧化管理和应用水平 不高,一方面是由于相关系统和硬件等不健全, 无法支撑这方面工作的开展和实施,另一方面是 智慧化管理意识不强,相关人员的专业化水平不 够,所采用的工程管理手段和模式滞后。

4 建筑工程建设智慧化管理的路径和策略

4.1 健全和完善系统平台

建筑工程企业需要构建一个功能强大的智 能化系统。首先,该系统要能服务于建筑工程建 设及生产经营数据信息管理,方便各相关主体之 间的信息交换和各层级的信息传递,提高信息共 享、传递效率,有效规避信息孤岛、信息交流和 传递不及时等造成的损失,保证信息准确、完 整、一致、安全和规范。其次,该系统要能为建 筑工程企业资源配置和利用、生产经营和管理、 工程质量安全管理、工期和进度管理等提供服 务,实现工程建设全过程、动态化、全生命周期 的管理,以确保项目顺利进行,减少工程建设的 质量和安全隐患,降低施工成本。最后,建筑工 程企业要努力构建一个开放的建筑生态系统,加 强智慧建造标准化体系建设,推进建筑工程转型 升级,引导建筑工程行业融合新技术,更好地服 务于建筑工程规划设计、施工建设、采购招标、 项目管理、运营决策等工作的开展和实施,提高 工程建设管理的水平和效率,实现工程建设综合 效益最大化[9]。

4.2 健全智慧建造标准化体系

建筑工程企业需要持续完善和优化智慧建 造标准化体系,做好顶层设计,为工程建设规范 有序开展、为工程建设顺利进行提供支撑。首 先,需要构建完善的数据库和信息平台,加强业 务中台、数据中台建设,以实现企业内部不同部 门之间、企业与项目之前的有效沟通和交流,实 现业务数据的共享和利用,以全面反映建筑工程 企业状况和项目施工建设情况,对工程建设有更 深入的了解,准确把握工程建设的特点、重点和 难点,实现工程建设各项资源的优化配置,提高 项目管控能力。其次,通过加强智慧建造标准化 体系建设,借助智能化设备和工具,实现建筑工 程设计标准化、生产规模化、装配精准化, 提高 项目建设的水平和管理的效率。要求科学利用数 据化技术和手段,对工程项目各项管控数据进行 分类、组合、分析和传输,方便为各主体提供实 时化、真实有效的数据信息,为工程管理提供 支撑[10]。

4.3 科学利用BIM技术

BIM技术是一种先进的技术,通过构建BIM 三维立体模型,将工程项目全生命周期的信息数据集成到一个三维的建筑模型中。充分发挥BIM 技术的优势,实现工程建设智能化设计,直观、立体地展现工程实际情况、工程设计和建设有关信息,对各阶段和环节的施工建设进行模拟,

科学协调各施工主体和施工环节,为优化工程 设计图纸和施工建设方案提供参考, 直观反映 建筑土建、水电、消防、安装作业,确保有关 人员准确把握工程的设计依据、设计范围等, 对整个项目建设实施统筹规划和科学安排。结 合工程建设的实际需要,建立多个数据库,当 工程建设出现变化时, 在BIM参数模型中插入、 提取、更新和修改信息,为项目建设服务,实 现各环节的协同作业和科学管控,减少工程建 设中的不稳定性因素和风险因素。在工程项目 施工建设前,借助BIM模型进行深入分析,对工 程重点环节进行深化设计,对特殊节点、施工 工艺等进行优化改进和交底,并科学安排进度 计划、合理布置施工现场、优化资源配置和利 用,对建筑施工、生产要素和管理过程进行数 据化改造,规避"错、缺、漏、碰"和方案变 更等对工程建设造成的影响和不必要的成本费用 支出。

4.4 搭建智慧工地系统

建筑工程企业需要根据实际需要, 搭建完善 的智慧工地系统,科学利用物联网、云计算、GIS (地理信息系统)、大数据、人工智能等数字化 技术,集成各专业模块,以实现工程建设"人、 机、料、法、环、品"等的数字化驱动和智慧化 管理,实现工程建设综合效益最大化。智慧工地 系统一般主要由信息感知层、网络传输层、应用 处理层构成,感知层主要由反馈设备、采集设备 构成,如RFID(射频识别)标签、传感器、定位 和检测装置等,要能对施工人员、设备、材料、 施工活动等信息进行采集,及时反馈各项处理结 果及数据信息,为工程建设及管理提供信息基础 和保障: 网络传输层主要由信息传输系统及相关 软件构成,要能方便相关主体之间的信息交换, 实现各个子系统和各层级之间信息的有效传输和 转换,提高信息共享和利用效率;应用处理层主 要由数据库、智能移动设备以及相关硬件平台构 成,要能实现工程项目各有关数据信息的智能化 分析和处理,为工程建设和管理提供依据和参 考,协助解决和处理工程建设中的问题。

5 建筑工程建设智慧化管理的实际应用

5.1 建设项目整体建设思路

A工程项目建设总建筑面积为26350m²,总建造费用约为5亿元,涉及地上和地下两部分施工。为保障工程项目建设的质量安全,满足工程运行所需,该工程项目通过构建智慧工地系统,实施人员监管和工程质量安全监管,强调对该工程项目进行智能化设计,实施智慧化管

理。该系统主要由多个子系统构成,包括综合 布线系统、网络通信系统、楼宇自控系统、安 防系统、一卡通系统(含门禁、停车、消费及 考勤、巡更等系统)、信息发布与查询系统、 智能照明系统、智能模式控制系统、远程视频 会议系统和BMS(建筑设备管理系统)等。为确 保切实满足智慧化管理的需要,该智能化系统 在规划设计时强调综合考虑和分析工程项目对 智能化系统的需求,并为智能化系统升级及设 备更新换代留足空间。还强调科学应用远程采 集、远程控制、系统集成技术、网络技术和现 代监控技术等先进的技术工艺, 以实现工程项 目的数字化建设和智能化、自动化管控,用以 监测工程项目的风险隐患、各有关设备的运行和 使用、环境变化和人员操作, 便于在出现异常 和问题时自动报警和预警,有效提高工程项目 监管的质量,同时节约人力和时间等成本,也 能在出现故障和风险时,第一时间进行预判和 外理。

该工程项目所构建的智能化系统拥有良好的实用性、开放性、集成性和可扩展性,在工程项目结构化设计和标准化管理方面也发挥着重要作用。例如,借助BIM技术、信息化平台、大数据智能化平台等,用以完善工程建设方案,构建土建工程、机电工程、钢结构、安装等重要施工环节和分部工程的模型,对建筑施工现场布置、施工材料、施工进度等进行虚拟化演示;通过远程控制、实时监测、追踪控制等技术的应用,降低工程项目建设的风险隐患和减少质量问题;科学利用视频监控预警,在建筑工程项目重点部位安装监控摄像头,及时发现和处理习惯性违规违章行为;借助GPS(全球定位系统)技术、RFID定位等技术,做好安全检查和风险排查工作。

5.2 项目建设存在的问题及解决对策

该工程智能化项目的系统设计比较复杂,在项目施工建设及管控过程中也存在一些问题和不足,如各单位之间信息不对称,信息传递不及时,共享信息平台不健全;项目管理混乱,影响工程项目各工序的有效衔接,进而对工期进度造成影响;规划设计时考虑和分析问题不全面,诱发工程设计变更,造成工程项目预算超支。为有效规避和降低这类问题造成的影响,需要采用集成化、智慧化的管理方法强化工程项目管理,要根据项目建设和运行管理的实际需要,对智能化系统进行科学规划和设计,完善和优化各个子系统,建立更加完善的集成信息化管理系统,依托信息化技术、数据库模型以及信息共享平台,实现工程项目各工序、各环节、承包商和分包商、

设计、建设、施工、业主等之间的有效沟通,以及各项有关信息的有效传播和共享。重视加强合同管理,并明确规定业主、总包商、各个子系统施工单位的职责和工作内容,确保施工规范有序。要求对集成信息化管理系统有更全面的了解和认知,确保在整个工程项目施工建设和运营管理过程中能科学、合理地应用,发挥好优势和作用。

6 结束语

推进现代建筑工程行业的持续健康发展,需要不断创新和优化施工技术和工艺,同时也需要加强施工管控,提高建筑工程建设管理的水平和效率。也需要积极推进信息化、数字化、智能化建设,以支撑业务实施,实现高效化管理,持续提高竞争力。应实施智慧化管理,构建智慧工地系统和智能化管控平台,加强智慧建造标准化体系建设,推动建筑工程向智能化、绿色化、网络化、数字化、工业化方向转型升级,引导建筑工程行业融合新技术。应通过实施智慧化管理,实现全面、动态化的追踪控制和监督,实现精细化、标准管理的目标要求,实现建筑行业智慧化升级。

参考文献

- [1] 吴豪,王雪霞,李鹏.基于智能化技术的工程 施工管理方式研究[J].科技风,2020(16): 12.
- [2] 沈悦,郑甫田.智慧工地系统在房建施工现场管理中的应用研究[J].商品与质量,2021(4):331.
- [3] 李少旭.大数据智能化平台在建筑施工管理中的应用[J].石家庄职业技术学院学报,2021,33(2):26-28.
- [4] 周亚东.建筑智能化施工管理现状及策略分析 [J].智能建筑与智慧城市,2019(2):76-77.
- [5] 夏令辉.建筑智能化工程管理技术的应用研究 [J].科技视界, 2019 (14): 216-217.
- [6] 张防全.建筑工程管理方法分析与智能化技术研究[J].工程技术研究,2020,5(4):149-150.
- [7] 任月敬.浅谈智慧工地系统在建筑工程管理中的应用[J].智能城市,2021,7(5):77-78.
- [8] 高远超,孙立坤.以"BIM+智慧工地"构建 数字化竞争力[J].施工企业管理,2021(3): 81-83.
- [9] 朱传清.智慧工地系统在建筑施工过程中的应用[J].智能城市,2021,7(3):167-168.
- [10] 朱傲寒.智慧化工地监控系统研究[J].中国设备工程,2021(3):29-30.